
第 39卷第 3期
2020年 6月

红 外 与 毫 米 波 学 报
J. Infrared Millim. Waves

Vol. 39，No. 3
June，2020

文章编号：1001-9014（2020）03-0300-06 DOI：10. 11972/j. issn. 1001-9014. 2020. 03. 006

A fast imaging algorithm for sparse array imaging based on PCA and
modified SLIM methods

MENG Xiang-Xin， WU Shuai*， TU Hao， LIU Tao-Rong， JIN Xue-Ming
（Brainware Terahertz Information Technology Co. Ltd，Hefei 230000，China）

Abstract：An algorithm combining frequency domain imaging algorithm and compressed sensing（CS）frame⁃
work is proposed in here for millimeter-wave multi-static sparse array imaging. The algorithm consists of two ma⁃
jor steps. Firstly，the typical fast Fourier transform（FFT）algorithm used in square boundary array with phase
center approximation（PCA）is carried out. However，the residual phase error introduced by the PCA at close
range cannot be compensated completely，so in the second step，the modified sparse learning via iterative minimi⁃
zation（SLIM）algorithm which is in the CS framework is introduced to refocus the initial images. By combining
PCA and the modified SLIM algorithm，the proposed algorithm reaches a better computational efficiency，im⁃
proves the image quality，and alleviates the requirement for iterations of the original SLIM algorithm. Simulation
results verify the effectiveness of this algorithm.
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基于等效相位中心近似与改进SLIM算法的稀疏阵列快速成像算法

孟祥新， 武 帅*， 涂 昊， 柳桃荣， 靳学明
（博微太赫兹信息科技有限公司，安徽 合肥 230000）

摘要：提出一种应用于毫米波稀疏阵列成像的基于频率域成像算法和压缩感知技术相结合的成像算法。算

法包含两个主要步骤，首先采用等效相位中心近似原理，将快速傅里叶变换成像算法用于周边形阵列，由于

等效相位中心近似引入的残余相位误差无法在近距离成像应用中被完全补偿，因此在第二个步骤中，提出基

于压缩感知技术的基于迭代最小化的稀疏学习（SLIM）的改进算法用于重聚焦初始图像。通过等效相位中心

近似原理和改进的SLIM算法的结合，所提算法具备更高的计算效率、提升了图像质量、相比于传统的SLIM算

法具备更少的迭代次数。仿真结果验证了所提算法的有效性。
关 键 词：稀疏阵列成像；傅里叶变换成像算法；改进的SLIM算法；压缩感知
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Introduction
Millimeter-wave imaging technology is widely usedin earth observation ［1］，non-destructive testing ［2］，secu⁃rity inspection imaging ［3-4］，which has great commercialand scientific values. A variety of imaging configurationsis able to form three-dimensional holographic images ofthe targeted area，such as one-dimensional array com⁃bined with mechanical scanning imaging［3-4］，two-dimen⁃sional full and sparse array imaging［5-8］and single pixel re⁃al aperture imaging ［9］. Two-dimensional sparse planar

array technology has the advantages of fewer antennasand no mechanical scanning parts，thus it has become aresearch hotpot in the field of millimeter-wave three-di⁃mensional imaging.There have been plenty of studies concerningthe im⁃aging algorithms for 2D sparse arrays，among which Wil⁃liam F. Moulder preprocessed the raw back scatter databy phase center approximation（PCA）method in sparsesquare boundary array（BA）configuration ［7-8］. The fastFourier transform（FFT） algorithm was applied in theconfiguration which has improved the image reconstruc⁃
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tion efficiency greatly to reach a video frame rate of 10Hz［10］. The compensation process for the PCA was per⁃formed by assuming a constant imaging distance，where⁃as refocusing phenomenon was obvious at close range.The larger the spacing between transmitting antennas andreceiving antennas，the more difficult it was to correctthe residual phase errors introduced by PCA except at thelong distances. Thus，this method cannot obtain good im⁃age quality for target area at close range，while it can on⁃ly work at far range where the resolution is worse for fixedaperture size.Aiming at solving the previous issue，an improvedmethod combining PCA and compressed sensing（CS）isproposed in this paper for the BA configuration ［7-8］. Amodified sparse learning via iterative minimization
（SLIM）algorithm based on CS theory is utilized for refo⁃cusing at close-range，solving the problem that the FFTalgorithm cannot image close-range targets accurately.The effectiveness of the proposed method is verified bysimulation results.
1 Sparse array design and algorithm
1. 1 The Sparse array and PCA processThe geometrical configuration of the BA used in thispaper is shown in Fig. 1 with the parameters shown inTable 1. The spacing of antenna elements is set as 0. 01m which is smaller than the central wavelength λc =0.0111m，resulting in a spacing of the equivalent ele⁃ments of 0. 005 m smaller which satisfies the criterion ofless than half the central wavelength. Such a configura⁃tion ensures that no grating lobes appear in the imagingfield of view.

The phase center approximation process for a pair oftransmitting and receiving antennas is shown in Fig. 2.The spatial coordinates( xt，yt，z0 ) and ( xr，yr，z0 ) denotesthe positions of the transmitting antenna and the receiv⁃ing antenna respectively，( xc，yc，z0 ) represents the equiv⁃alent phase center position. P ( x，y，z ) denotes a scatter⁃

ing center on the target. The slant ranges between the an⁃tennas to the target point are，
Rt = ( xt - x )2 + ( yt - y )2 + ( z0 - z )2 ,（1）
Rr = ( xr - x )2 + ( yr - y )2 + ( z0 - z )2 .（2）

Then，the back-scattered signal can be express-edas，
s ( xt,yt,xr,yr,z ) = ∭σ ( x,y,z )e- jk (Rt + Rr )dxdydz ,（3）

where k = 2πf/c denotes wavenumber of the transmitted
signal. After the PCA process，the back-scattered signalcan be expressed as，

s ( xc,yc,z0 ) = ∭σ ( x,y,z )e- j2kRcdxdydz ,（4）
where the slant range between the phase center positionand the target point is given by，

Rc = ( xc - x )2 + ( yc - y )2 + ( z0 - z )2 .（5）
The slant range error ΔR introduced by the PCA is，ΔR = Rt + Rr - 2Rc （6）
Therefore，the phase errors introduced by the slantrange error need to be compensated as follows，

sPhaseError = exp ( jkΔR ) （7）
s′( xc,yc,z0 ) = s ( xc,yc,z0 ) ⋅ sPhaseError （8）

where SPhaseError denotes the compensation factor，
s′( xc，yc，z0 ) denotes the compensated signal.By applying Eq. （8），the phase errors introducedby the PCA are compensated. But the compensation fac⁃tor is only accurate for a fixed reference point on the tar⁃get，where usually the center point P0 (0，0，z0 ) of the tar⁃get is chosen. The result of this drawback is that thephase errors cannot be compensated accurately at arbi⁃trary positions in the target area. Also，the approxima⁃tion requires the distance between the transmitting anten⁃na and the receiving antenna to be much smaller than thetarget distance，in which case，the residual phase errorscan be negligible. These errors can be corrected by usingthe modified SLIM algorithm introduced in Sect. Ⅱ. C.
1. 2 FFT Algorithm

σ (x,y,z) =∑
p

Nf

S (kx,ky,k)ejz 4k2 - k2x - k2yΔkp ,（9）

Fig. 1 The square boundary array，where the red circles repre‐
sent the spatial position of the transmitting antenna and the green
circles represent the spatial position of the receiving antenna，
blue stars show the positions of the equivalent phase center
图 1 周边型阵列，红色圆圈表示发射阵元的位置，绿色圆圈表
示接收阵元的位置，蓝色星号表示等效相位中心位置

Fig. 2 Sparse array equivalent phase center schematic
图2 稀疏阵列等效相位中心示意图
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S (kx,ky,k ) = FT2D [ s′( xc,yc,z0 ) ] . （10）
The FFT algorithm can obtain images at differentranges zi by parallel computing，where zi ∈ [ Zmin，Zmax ]

（for i = 1，...，N），Zmin and Zmaxrepresent the minimumand maximum range in the imaging scene，N representsthe number of the range position slices. The images inthe different range position slices can be reconstructedparallel，thus the algorithm has high computational effi⁃ciency.
1. 3 The Modified SLIM AlgorithmThe imaged targets can be decomposed into a set ofscattering points，which occupy only a part of the wholescene，so the targets in millimeter-wave images can beexpressed sparsely. The sparse learning via iterative min⁃imization（SLIM）algorithm is a sparse signal reconstruc⁃tion algorithm based on statistical optimization［11］. Inthis paper，we introduce the SLIM algorithm to refocusthe images obtained from the FFT algorithm.The sparse signal model is expressed as，

y = Ax + n , （11）
where y ∈ ΩMNP × 1denotes the sampled measurement vec⁃
tor andA ∈ ΩMNP × M′N′denotes the transformation matrix.M denotes the number of transmit elements，N denotesthe number of receive elements and P denotes the num⁃ber of sweep frequencies. The volume of the back-scat⁃tered signal isM × N × P，which can be transformed to
ywith the dimension of MNP × 1. M′ denotes the number
of the rows in the image and N′ denotes the number of thecolumns in the image. x ∈ ΩM′N′ × 1 denotes the sparse sig⁃nal to be reconstructed. n ∈ ΩMNP × 1 denotes the additivewhite Gaussian noise. The original back-scattered sig⁃nal，rewritten into a vector，is set as y，the transforma⁃
tion matrix A can be deduced from the theoretical modelof the back-scattered signal，

A( xt,yt,xr,yr ; x,y,z ) = e- jk (Rt + Rr ) . （12）
And the initial guess x0 required by the SLIM algo⁃rithm is chosen as the output image from the FFT algo⁃rithm. Then the final images can be numerically solvedby the SLIM algorithm，the details of the SLIM algorithmcan be found in Ref.［11］.The imaged targets in the image are sparse in thewhole image because the effective pixels account for asmall part of all pixels and the rest are background. It isnot necessary to input all the pixels of the distorted imag⁃es to the SLIM algorithm，so the effective pixels of thetarget in the images can be selected in advance and the

transformation matrix A is not necessary to input into thealgorithm wholly. The number of effective pixels is small⁃er than the total pixels，and then it can be utilized to re⁃duce the computational complexity of the SLIM algo⁃rithm. The method of selecting effective pixels can beconverting the initial distorted images to logarithmic im⁃ages，and setting a logarithmic threshold to select the pix⁃els and the effective positions.From this point of view that decreasing the input da⁃ta volume to improve the SLIM algorithm，a modifiedSLIM algorithm is described below，
（1）Converting the distorted image I to a normalizedlogarithmic-scale imageI_dB.
（2）Setting a logarithmic threshold Th_dB to obtainthe voxels where Posi_Th = Posi [ I_dB > Th_dB ].
（3）Setting A_Th = A [ Posi_Th ] as the new transfor⁃

mation matrix and x_Th = I [ Posi_Th ] as the initial
sparse signal vector.

（4）The matrixA_Th and the vector x_Thare set asinitial input data of the typical SLIM algorithm to solvethe sparse signalx_newTh.
（5）Then the final reconstructed signal x can be ex⁃pressed asx [ Posi_Th ] = x_newTh.

It can be seen that the modified SLIM algorithm canimprove the computational efficiency by reducing the da⁃ta volume of the transformation matrix A and the sparsesignal x. Only the targets in the distorted images need tobe reconstructed while other weak voxels are discarded.In this process，auto-focusing accuracy is also improvedby the modified SLIM algorithm. The precondition of the

Table 1 System Parameters
表1 系统参数

Parameters
Frequency
Sweep points

Unambiguous distance
Number of transmit elements
Number of receive elements

Element spacing

Values
24~30GHz

24
0. 6m
48
48

0. 01m

Fig. 3 The main steps of the proposed algorithm
图3 所提算法主要步骤
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modified SLIM algorithm is that the targets are sparse inthe scenario，such as through-the-wall radar imaging，ground penetrating imaging and nondestructive testingimaging. If the targets’sparse character is not obvious；the improvement of calculation efficiency is also not sig⁃nificant. Then the main steps of the proposed algorithmare shown in Fig. 3.
2 Experimental Results and Discussion
2. 1 Points targets simulationTo verify the effectiveness of the proposed method，the back-scattered signal of nine point targets is simulat⁃ed by MATLAB using the geometrical optics method
（GO）. The central range between the targets and theplane of BA is set at 0. 2 m. The algorithms have beenimplemented by MATLAB codes based on a multi-coreworkstation equipped with a Xeon W-2195 CPU @ 2. 30GHz and 64. 0 GB RAM.The reconstruction results are shown in Fig. 4 andthe red circles represent the real positions of the ninepoint target. It can be seen that the image of the FFT al⁃gorithm based on PCA is distorted because the maximumdistance between the transmitting antennas and the re⁃ceiving antennas is larger than 0. 2 m，thus the residualphase error cannot be neglected in this condition. Asshown in Fig. 4（b）and（c），the focusing quality of theauto-focus images is obviously improved compared to thatof the FFT algorithm. At the same time，the computationtime of the modified SLIM algorithm is shorter than thatof the typical SLIM algorithm as shown in Table 2.

2. 2 Simulation of Complex TargetsThe electromagnetic simulation software is used tosimulate the back-scattered signal of the complex targetscomprised of letters made from metal strips. The target isshown in Fig. 5 and the final images are shown in Fig. 6.The image of the FFT algorithm is distorted in Fig. 6（a）because the phase errors introduced by the PCA cannotbe corrected completely. The focusing quality of the auto-

focus images shown in Fig. 6（b）and（c）is better thanthat of the FFT algorithm. The computation time of themodified SLIM algorithm is approximately a quarter ofthe typical SLIM algorithm，as shown in Table 3，whichimproves efficiency to a large extent.

2. 3 Simulation under Noisy EnvironmentRandom noise whose relative magnitude is between -40dB~0dB is added into the back-scattered data of thecomplex target to test the robustness to noise of differentalgorithms. The image contrast criterion used in Ref.
［12］is introduced to evaluate the quality of the images.The larger value of the image contrast is，the better quali⁃ty of the image is. The comparisons of image contrast arelisted in Table 4.It can be seen that image contrast of the two auto-fo⁃cus algorithms is larger than those of the FFT algorithmfor all different noise levels. In the meanwhile，the im⁃age contrast of the modified SLIM algorithm is better thanthat of the typical SLIM algorithm. The simulation re⁃sults verify the ability to suppress noise of the two auto-fo⁃cus algorithms，and the refocusing precision of the modi⁃fied SLIM algorithm in the condition of the same iteration

Fig. 4 （a）The original image generated by the FFT algorithm
（b）The auto- focus image generated by the SLIM algorithm（it‐
eration number = 2）（c）The auto-focus image generated by the
modified SLIM algorithm（Th_dB = -15dB and no iteration）
图 4 （a）FFT算法初始图像（b）SLIM算法自聚焦图像（c）改进
SLIM算法自聚焦图像

Table 2 Computing time
表2 计算时间

algorithm
Time/s

SLIM algorithm
19. 18

Modified SLIM algorithm
3. 82

Fig. 5 The simulation model of THZ letter.
图5 THZ字母的仿真模型

Fig. 6 （a）The original image generated by the FFT algorithm
（b）The auto-focus image generated by the SLIM algorithm（iter‐
ation number = 2）（c）The auto-focus image generated by the
modified SLIM algorithm（Th_dB = -20dB and no iteration）
图6 （a）FFT算法初始图像（b）SLIM算法自聚焦图像（迭代次
数2）（c）改进SLIM算法自聚焦图像（Th_dB = -20dB，无迭代）

Table 3 Computing time
表3 计算时间

algorithm
Time/s

SLIM algorithm
20. 63

Modified SLIM algorithm
2. 45
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number is better than the typical SLIM algorithm，as can
be seen Fig. 7.

2. 4 Number of iterations
The number of iterations required in the SLIM algo⁃

rithm must be vital for computation efficiency. If the
number of iterations is too large，the computational time
may be too long，and if the number of iterations is too
small，the quality of images may be poor.

The images of the SLIM algorithm and the modifiedSLIM algorithm without additive noise under different it⁃erations are shown in Fig. 8 and Fig. 9；the curves of thecontrast as a function of the iteration number are shownin Fig. 10. The values of the contrast display littlechange beyond the second iteration. And we note that，the modified SLIM algorithm reaches a stable contrast on⁃ly after the first iteration，i. e. no iteration is actuallyneeded at all，and at the meantime，the image contrast ishigher for the same iteration number. The results verifythat the modified SLIM algorithm can achieve reasonableimage quality without any iteration process，thus furtherimproves the computation efficiency.
3 Conclusions

An algorithm combining the PCA，FFT and modi⁃fied SLIM auto-focus algorithms for millimeter-wavesparse planar array imaging is presented here. The dis⁃torted images generated by PCA and FFT are refocusedby the modified SLIM algorithm to compensate the residu⁃al phase error introduced by the PCA. The simulationsverify that the modified algorithm can achieve better im⁃ages and higher computational efficiency，and comparedto the original SLIM algorithm，no iteration is required.This proposed algorithm may find applications in through-the-wall radar imaging，ground penetrating imaging，non⁃destructive testing imaging，handheld millimeter-wave

Fig. 10 The Contrast criteria of different iterations.
图10 不同迭代次数的对比度指标

Table 4 Comparisons image Contrast of different algo⁃
rithms

表4 不同算法图像对比度的对比
Noise
0dB
-10dB
-20dB
-30dB
-40dB
No noise

FFT
1. 45
2. 08
2. 30
2. 35
2. 36
2. 36

SLIM-FFT
2. 46
2. 80
2. 81
2. 80
2. 81
2. 80

Modified SLIM-FFT
2. 66
2. 87
2. 86
2. 86
2. 85
2. 85

Fig. 7 （a）The original image generated by the FFT algorithm
（b）The auto-focus image generated by the SLIM algorithm（iter‐
ation number = 2）（c）The auto-focus image generated by the
modified SLIM algorithm（Th_dB = -20dB and iteration num‐
ber = 2）
图7 （a）FFT算法初始图像（b）SLIM算法自聚焦图像（迭代次
数 2）（c）改进 SLIM 算法自聚焦图像（Th_dB = -20dB，迭代次
数2）

Fig. 8 Images under different iteration numbers of the SLIM algorithm.（a）1（b）2（c）3（d）4
图8 SLIM算法不同迭代次数的图像（a）1（b）2（c）3（d）4

Fig. 9 Images under different iteration numbers of the modified SLIM algorithm（Th_dB = -20 dB）.（a）1（b）2（c）3（d）4
图9 改进SLIM算法不同迭代次数的图像（Th_dB = -20 dB）（a）1（b）2（c）3（d）4
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security inspection and remote sensing，etc.
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